Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113697, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38294901

RESUMO

The pandemic HIV-1, HIV-1 group M, emerged from a single spillover event of its ancestral lentivirus from a chimpanzee. During human-to-human spread worldwide, HIV-1 diversified into multiple subtypes. Here, our interdisciplinary investigation mainly sheds light on the evolutionary scenario of the viral budding system of HIV-1 subtype C (HIV-1C), a most successfully spread subtype. Of the two amino acid motifs for HIV-1 budding, the P(T/S)AP and YPxL motifs, HIV-1C loses the YPxL motif. Our data imply that HIV-1C might lose this motif to evade immune pressure. Additionally, the P(T/S)AP motif is duplicated dependently of the level of HIV-1 spread in the human population, and >20% of HIV-1C harbored the duplicated P(T/S)AP motif. We further show that the duplication of the P(T/S)AP motif is caused by the expansion of the CTG triplet repeat. Altogether, our results suggest that HIV-1 has experienced a two-step evolution of the viral budding process during human-to-human spread worldwide.


Assuntos
Soropositividade para HIV , HIV-1 , Humanos , Animais , HIV-1/genética , Pandemias , Lentivirus , Divisão Celular , Pan troglodytes
2.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37848618

RESUMO

BACKGROUND: Bats harbor various viruses without severe symptoms and act as their natural reservoirs. The tolerance of bats against viral infections is assumed to originate from the uniqueness of their immune system. However, how immune responses vary between primates and bats remains unclear. Here, we characterized differences in the immune responses by peripheral blood mononuclear cells to various pathogenic stimuli between primates (humans, chimpanzees, and macaques) and bats (Egyptian fruit bats) using single-cell RNA sequencing. RESULTS: We show that the induction patterns of key cytosolic DNA/RNA sensors and antiviral genes differed between primates and bats. A novel subset of monocytes induced by pathogenic stimuli specifically in bats was identified. Furthermore, bats robustly respond to DNA virus infection even though major DNA sensors are dampened in bats. CONCLUSIONS: Overall, our data suggest that immune responses are substantially different between primates and bats, presumably underlying the difference in viral pathogenicity among the mammalian species tested.


Assuntos
Quirópteros , Viroses , Humanos , Animais , Quirópteros/genética , Leucócitos Mononucleares , Análise da Expressão Gênica de Célula Única , Imunidade Inata , Viroses/genética , Viroses/veterinária , Primatas/genética , DNA
3.
J Virol ; 95(13): e0017821, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33762419

RESUMO

As the hosts of lentiviruses, almost 40 species of felids (family Felidae) are distributed around the world, and more than 20 feline species test positive for feline immunodeficiency virus (FIV), a lineage of lentiviruses. These observations suggest that FIVs globally infected a variety of feline species through multiple cross-species transmission events during a million-year history. Cellular restriction factors potentially inhibit lentiviral replication and limit cross-species lentiviral transmission, and cellular APOBEC3 deaminases are known as a potent restriction factor. In contrast, lentiviruses have evolutionary-acquired viral infectivity factor (Vif) to neutralize the APOBEC3-mediated antiviral effect. Because the APOBEC3-Vif interaction is strictly specific for viruses and their hosts, a comprehensive investigation focusing on Vif-APOBEC3 interplay can provide clues that will elucidate the roles of this virus-host interplay on cross-species transmission of lentiviruses. Here, we performed a comprehensive investigation with 144 patterns of a round robin test using 18 feline APOBEC3Z3 genes, an antiviral APOBEC3 gene in felid, and 8 FIV Vifs and derived a matrix showing the interplay between feline APOBEC3Z3 and FIV Vif. We particularly focused on the interplay between the APOBEC3Z3 of three felids (domestic cat, ocelot, and Asian golden cat) and an FIV Vif (strain Petaluma), and revealed that residues 65 and 66 of the APOBEC3Z3 protein of multiple felids are responsible for the counteraction triggered by FIV Petaluma Vif. Altogether, our findings can be a clue to elucidate not only the scenarios of the cross-species transmissions of FIVs in felids but also the evolutionary interaction between mammals and lentiviruses. IMPORTANCE Most of the emergences of new virus infections originate from the cross-species transmission of viruses. The fact that some virus infections are strictly specific for the host species indicates that certain "species barriers" in the hosts restrict cross-species jump of viruses, while viruses have evolutionary acquired their own "arms" to overcome/antagonize/neutralize these hurdles. Therefore, understanding of the molecular mechanism leading to successful cross-species viral transmission is crucial for considering the menus of the emergence of novel pathogenic viruses. In the field of retrovirology, APOBEC3-Vif interaction is a well-studied example of the battles between hosts and viruses. Here, we determined the sequences of 11 novel feline APOBEC3Z3 genes and demonstrated that all 18 different feline APOBEC3Z3 proteins tested exhibit anti-feline immunodeficiency virus (FIV) activity. Our comprehensive investigation focusing on the interplay between feline APOBEC3 and FIV Vif can be a clue to elucidate the scenarios of the cross-species transmissions of FIVs in felids.


Assuntos
Desaminase APOBEC-1/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Felina/metabolismo , Infecções por Lentivirus/transmissão , Animais , Gatos , Linhagem Celular , Células HEK293 , Especificidade de Hospedeiro/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Infecções por Lentivirus/patologia , Panthera , Replicação Viral/fisiologia
4.
Nat Commun ; 11(1): 5656, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168808

RESUMO

Establishment of spermatogonia throughout the fetal and postnatal period is essential for production of spermatozoa and male fertility. Here, we establish a protocol for in vitro reconstitution of human prospermatogonial specification whereby human primordial germ cell (PGC)-like cells differentiated from human induced pluripotent stem cells are further induced into M-prospermatogonia-like cells and T1 prospermatogonia-like cells (T1LCs) using long-term cultured xenogeneic reconstituted testes. Single cell RNA-sequencing is used to delineate the lineage trajectory leading to T1LCs, which closely resemble human T1-prospermatogonia in vivo and exhibit gene expression related to spermatogenesis and diminished proliferation, a hallmark of quiescent T1 prospermatogonia. Notably, this system enables us to visualize the dynamic and stage-specific regulation of transposable elements during human prospermatogonial specification. Together, our findings pave the way for understanding and reconstructing human male germline development in vitro.


Assuntos
Células Germinativas Embrionárias/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Espermatogênese/genética , Espermatogênese/fisiologia , Animais , Diferenciação Celular , Epigenômica , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Elementos Reguladores de Transcrição , Análise de Sequência de RNA , Espermatogônias/citologia , Espermatozoides , Testículo/citologia , Transcriptoma
5.
PLoS Pathog ; 16(9): e1008812, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32913367

RESUMO

The APOBEC3 deaminases are potent inhibitors of virus replication and barriers to cross-species transmission. For simian immunodeficiency virus (SIV) to transmit to a new primate host, as happened multiple times to seed the ongoing HIV-1 epidemic, the viral infectivity factor (Vif) must be capable of neutralizing the APOBEC3 enzymes of the new host. Although much is known about current interactions of HIV-1 Vif and human APOBEC3s, the evolutionary changes in SIV Vif required for transmission from chimpanzees to gorillas and ultimately to humans are poorly understood. Here, we demonstrate that gorilla APOBEC3G is a factor with the potential to hamper SIV transmission from chimpanzees to gorillas. Gain-of-function experiments using SIVcpzPtt Vif revealed that this barrier could be overcome by a single Vif acidic amino acid substitution (M16E). Moreover, degradation of gorilla APOBEC3F is induced by Vif through a mechanism that is distinct from that of human APOBEC3F. Thus, our findings identify virus adaptations in gorillas that preceded and may have facilitated transmission to humans.


Assuntos
Desaminase APOBEC-3G/metabolismo , Evolução Molecular , Produtos do Gene vif/metabolismo , Interações Hospedeiro-Patógeno , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/isolamento & purificação , Replicação Viral , Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/genética , Sequência de Aminoácidos , Animais , Produtos do Gene vif/química , Produtos do Gene vif/genética , Gorilla gorilla , Humanos , Pan troglodytes , Filogenia , Conformação Proteica , Homologia de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
6.
Cell Rep ; 32(2): 107887, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668246

RESUMO

For eradication of HIV-1 infection, it is important to elucidate the detailed features and heterogeneity of HIV-1-infected cells in vivo. To reveal multiple characteristics of HIV-1-producing cells in vivo, we use a hematopoietic-stem-cell-transplanted humanized mouse model infected with GFP-encoding replication-competent HIV-1. We perform multiomics experiments using recently developed technology to identify the features of HIV-1-infected cells. Genome-wide HIV-1 integration-site analysis reveals that productive HIV-1 infection tends to occur in cells with viral integration into transcriptionally active genomic regions. Bulk transcriptome analysis reveals that a high level of viral mRNA is transcribed in HIV-1-infected cells. Moreover, single-cell transcriptome analysis shows the heterogeneity of HIV-1-infected cells, including CXCL13high cells and a subpopulation with low expression of interferon-stimulated genes, which can contribute to efficient viral spread in vivo. Our findings describe multiple characteristics of HIV-1-producing cells in vivo, which could provide clues for the development of an HIV-1 cure.


Assuntos
Genômica , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/fisiologia , Animais , Feminino , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Transcriptoma/genética
7.
Front Microbiol ; 10: 429, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915053

RESUMO

Immediately after viral infections, innate immune sensors recognize viruses and lead to the production of type I interferon (IFN-I). IFN-I upregulates various genes, referred to as IFN-stimulated genes (ISGs), and some ISGs inhibit viral replication. HIV-1, the causative agent of AIDS, mainly infects CD4+ T cells and macrophages and triggers the IFN-I-mediated signaling cascade. Certain ISGs are subsequently upregulated by IFN-I stimulus and potently suppress HIV-1 replication. HIV-1 cell biology has shed light on the molecular understanding of the IFN-I production triggered by HIV-1 infection and the antiviral roles of ISGs. However, the differences in the gene expression patterns following IFN-I stimulus among HIV-1 target cell types are poorly understood. In this study, we hypothesize that the expression profiles of ISGs are different among HIV-1 target cells and address this question by utilizing public transcriptome datasets and bioinformatic techniques. We focus on three cell types intrinsically targeted by HIV-1, including CD4+ T cells, monocytes, and macrophages, and comprehensively compare the expression patterns of ISGs among these cell types. Furthermore, we use the datasets of the differentially expressed genes by HIV-1 infection and the evolutionarily conserved ISGs in mammals and perform comparative transcriptome analyses. We defined 104 'common ISGs' that were upregulated by IFN-I stimulus in CD4+ T cells, monocytes, and macrophages. The ISG expression patterns were different among these three cell types, and intriguingly, both the numbers and the magnitudes of upregulated ISGs by IFN-I stimulus were greatest in macrophages. We also found that the upregulated genes by HIV-1 infection included most 'common ISGs.' Moreover, we determined that the 'common ISGs,' particularly those with antiviral activity, were evolutionarily conserved in mammals. To our knowledge, this study is the first investigation to comprehensively describe (i) the different expression patterns of ISGs among HIV-1 target cells, (ii) the overlap in the genes modulated by IFN-I stimulus and HIV-1 infection and (iii) the evolutionary conservation in mammals of the antiviral ISGs that are expressed in HIV-1 target cells. Our results will be useful for deeply understanding the relationship of the effect of IFN-I and the modulated gene expression by HIV-1 infection.

8.
Retrovirology ; 15(1): 31, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636069

RESUMO

BACKGROUND: The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) gene family appears only in mammalian genomes. Some A3 proteins can be incorporated into progeny virions and inhibit lentiviral replication. In turn, the lentiviral viral infectivity factor (Vif) counteracts the A3-mediated antiviral effect by degrading A3 proteins. Recent investigations have suggested that lentiviral vif genes evolved to combat mammalian APOBEC3 proteins, and have further proposed that the Vif-A3 interaction may help determine the co-evolutionary history of cross-species lentiviral transmission in mammals. RESULTS: Here we address the co-evolutionary relationship between two New World felids, the puma (Puma concolor) and the bobcat (Lynx rufus), and their lentiviruses, which are designated puma lentiviruses (PLVs). We demonstrate that PLV-A Vif counteracts the antiviral action of APOBEC3Z3 (A3Z3) of both puma and bobcat, whereas PLV-B Vif counteracts only puma A3Z3. The species specificity of PLV-B Vif is irrespective of the phylogenic relationships of feline species in the genera Puma, Lynx and Acinonyx. We reveal that the amino acid at position 178 in the puma and bobcat A3Z3 is exposed on the protein surface and determines the sensitivity to PLV-B Vif-mediated degradation. Moreover, although both the puma and bobcat A3Z3 genes are polymorphic, their sensitivity/resistance to PLV Vif-mediated degradation is conserved. CONCLUSIONS: To the best of our knowledge, this is the first study suggesting that the host A3 protein potently controls inter-genus lentiviral transmission. Our findings provide the first evidence suggesting that the co-evolutionary arms race between lentiviruses and mammals has occurred in the New World.


Assuntos
Citosina Desaminase/genética , Interações Hospedeiro-Patógeno/genética , Infecções por Lentivirus/transmissão , Infecções por Lentivirus/virologia , Lentivirus/fisiologia , Animais , Gatos , Citosina Desaminase/química , Citosina Desaminase/metabolismo , Resistência à Doença , Evolução Molecular , Produtos do Gene vif , Vírus da Imunodeficiência Felina/classificação , Vírus da Imunodeficiência Felina/genética , Lentivirus/classificação , Mutação com Perda de Função , Modelos Moleculares , Filogenia , Polimorfismo Genético , Conformação Proteica , Proteólise , Relação Estrutura-Atividade , Treonina/química , Treonina/genética
9.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29212937

RESUMO

Human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, originated from simian immunodeficiency virus from chimpanzees (SIVcpz), the precursor of the human virus, approximately 100 years ago. This indicates that HIV-1 has emerged through the cross-species transmission of SIVcpz from chimpanzees to humans. However, it remains unclear how SIVcpz has evolved into pandemic HIV-1 in humans. To address this question, we inoculated three SIVcpz strains (MB897, EK505, and MT145), four pandemic HIV-1 strains (NL4-3, NLCSFV3, JRCSF, and AD8), and two nonpandemic HIV-1 strains (YBF30 and DJO0131). Humanized mice infected with SIVcpz strain MB897, a virus phylogenetically similar to pandemic HIV-1, exhibited a peak viral load comparable to that of mice infected with pandemic HIV-1, while peak viral loads of mice infected with SIVcpz strain EK505 or MT145 as well as nonpandemic HIV-1 strains were significantly lower. These results suggest that SIVcpz strain MB897 is preadapted to humans, unlike the other SIVcpz strains. Moreover, viral RNA sequencing of MB897-infected humanized mice identified a nonsynonymous mutation in env, a G413R substitution in gp120. The infectivity of the gp120 G413R mutant of MB897 was significantly higher than that of parental MB897. Furthermore, we demonstrated that the gp120 G413R mutant of MB897 augments the capacity for viral replication in both in vitro cell cultures and humanized mice. Taken together, this is the first experimental investigation to use an animal model to demonstrate a gain-of-function evolution of SIVcpz into pandemic HIV-1.IMPORTANCE From the mid-20th century, humans have been exposed to the menace of infectious viral diseases, such as severe acute respiratory syndrome coronavirus, Ebola virus, and Zika virus. These outbreaks of emerging/reemerging viruses can be triggered by cross-species viral transmission from wild animals to humans, or zoonoses. HIV-1, the causative agent of AIDS, emerged by the cross-species transmission of SIVcpz, the HIV-1 precursor in chimpanzees, around 100 years ago. However, the process by which SIVcpz evolved to become HIV-1 in humans remains unclear. Here, by using a hematopoietic stem cell-transplanted humanized-mouse model, we experimentally recapitulate the evolutionary process of SIVcpz to become HIV-1. We provide evidence suggesting that a strain of SIVcpz, MB897, preadapted to infect humans over other SIVcpz strains. We further demonstrate a gain-of-function evolution of SIVcpz in infected humanized mice. Our study reveals that pandemic HIV-1 has emerged through at least two steps: preadaptation and subsequent gain-of-function mutations.


Assuntos
Evolução Molecular , HIV-1/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Zoonoses/transmissão , Animais , Animais Selvagens/virologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Pan troglodytes/virologia , Filogenia , RNA Viral/genética , Carga Viral , Replicação Viral
10.
Retrovirology ; 14(1): 31, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28482907

RESUMO

Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins are mammalian-specific cellular deaminases and have a robust ability to restrain lentivirus replication. To antagonize APOBEC3-mediated antiviral action, lentiviruses have acquired viral infectivity factor (Vif) as an accessory gene. Mammalian APOBEC3 proteins inhibit lentiviral replication by enzymatically inserting G-to-A hypermutations in the viral genome, whereas lentiviral Vif proteins degrade host APOBEC3 via the ubiquitin/proteasome-dependent pathway. Recent investigations provide evidence that lentiviral vif genes evolved to combat mammalian APOBEC3 proteins. In corollary, mammalian APOBEC3 genes are under Darwinian selective pressure to escape from antagonism by Vif. Based on these observations, it is widely accepted that lentiviral Vif and mammalian APOBEC3 have co-evolved and this concept is called an "evolutionary arms race." This review provides a comprehensive summary of current knowledge with respect to the evolutionary dynamics occurring at this pivotal host-virus interface.


Assuntos
Citidina Desaminase/genética , Citosina Desaminase/genética , Evolução Molecular , Genes vif , Lentivirus/genética , Desaminases APOBEC , Animais , Citidina Desaminase/metabolismo , Citosina Desaminase/metabolismo , HIV-1 , Interações Hospedeiro-Patógeno , Humanos , Mamíferos/virologia , Seleção Genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
11.
Exp Biol Med (Maywood) ; 242(8): 850-858, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28346011

RESUMO

Human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome, encodes four accessory genes, one of which is viral protein U (Vpu). Recently, the study of Vpu has been of great interest. For instance, various cellular proteins are degraded (e.g. CD4) and down-modulated (e.g. tetherin) by Vpu. Vpu also antagonizes the function of tetherin and inhibits NF-κB. Moreover, Vpu is a viroporin forming ion channels and may represent a promising target for anti-HIV-1 drugs. In this review, we summarize the domains/residues that are responsible for Vpu's functions, describe the current understanding of the role of Vpu in HIV-1-infected cells, and review the effect of Vpu on HIV-1 in replication and pathogenesis. Future investigations that simultaneously assess a combination of Vpu functions are required to clearly delineate the most important functions for viral replication. Impact statement Viral protein U (Vpu) is a unique protein encoded by human immunodeficiency virus type 1 (HIV-1) and related lentiviruses, playing multiple roles in viral replication and pathogenesis. In this review, we briefly summarize the most up-to-date knowledge of HIV-1 Vpu.


Assuntos
HIV-1/fisiologia , Proteínas do Vírus da Imunodeficiência Humana/fisiologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Replicação Viral , Regulação Viral da Expressão Gênica , Genoma Viral , HIV-1/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...